
1

Policy and Context Management in

Dynamically Provisioned Access Control Service

for Virtualised Cloud Infrastructures

Canh Ngo
1
, Peter Membrey

2
, Yuri Demchenko

1
, Cees de Laat

1

University of Amsterdam
1, Hong Kong Polytechnic University

2

email: {t.c.ngo, y.demchenko, delaat}@uva.nl
1
, peter@membrey.hk

2

Abstract— Cloud computing is developing as a new wave of

ICT technologies, offering a common approach to on-

demand provisioning of computation, storage and network

resources which are generally referred to as infrastructure

services. Most of currently available commercial Cloud

services are built and organized reflecting simple relations of

a single provider to multiple customers with simple security

and trust model. New architectural models should allow

multi-provider heterogeneous services environment that can

be delivered to organizational customers representing

multiple user groups. These models should be supported by

new security approaches for multi-provider, multi-tenant

crossing security domains to create consistent and

dynamically configurable security services for virtualised

infrastructures. This paper proposes an on-demand

provisioned access control infrastructure with dynamic trust

establishment for entities in a Cloud IaaS architecture

model. It applies XACML-based RBAC model for the

flexible authorization policy configuration and management.

It uses authorization ticket as a security session management

mechanism to solve the security context synchronization and

exchange between multiple Cloud providers. The paper

describes practical implementation of the proposed Dynamic

Access Control Infrastructure as the part of a complex

infrastructure services provisioning system.

Keywords— Dynamic Access Control Infrastructure, RBAC,

XACML, Policy Generation, Dynamic Trust Establishment,

Security Context Management.

I. INTRODUCTION

Cloud computing is emerging as a common approach
and a service model for provisioning infrastructure
services on-demand that include both computation, storage
and advanced network infrastructure. Beside a wide
spectrum of currently available Cloud services, there is a
number of research and standardization activities focusing
on definitions, use-cases, and reference models such as
NIST Cloud Architecture collaboration group [1], [2].
OGF Infrastructure Services on Demand Research Group
(ISOD-RG) [3], and OASIS Cloud Identity Technical
Committee (IDCloud TC) [4].

The current widely accepted Cloud computing
definition is based on the NIST definition that identifies
five essential Cloud characteristics [2]: (1) on-demand
self-service; (2) broad network access and diversity of
client devices; (3) resource pooling that allows providers

to serve multi-tenant customers by managing resource
utilization more efficiently using virtualization, resource
partitioning and workload balancing; (4) rapid elasticity
that allows scaling resources dynamically; (5) measured
service with the pay-per-use business model. Other
additional feature is the heterogeneity on both provider
and customer sides, and multi-provider services.

Current trend in moving services to cloud facilitates
changing approaches to applications, services and utilities
provisioning and management. It motivates development
of new services provisioning models, and consequently
refactoring and re-thinking existing security models to
allow consistent security in a dynamic virtualised
environment.

Infrastructure Services Provisioning On-Demand
(ISOD) is an important part of all cloud service models
which can be delivered directly to end-users in the cloud
IaaS model or as the underlying infrastructure in
supporting for PaaS and SaaS cloud models. In this sense,
security is an important component of both approaches,
delivering services to end-users or securing underlying
infrastructure.

The paper presents the on-going research on
developing a security framework for Cloud IaaS
architecture. It aims to deliver a security infrastructure to
support consistent trust establishment, identity
management, access control, as well as security context
management. It proposes a solution for provisioning
authorisation services with dynamic trust establishment for
entities in the Cloud IaaS architecture and adopts the
Security Service Lifecycle Management model described
in [5]. It supports security context sharing across
distributed security domains among multiple providers by
using authorization tickets as a security/authorisation
session management mechanism. It also uses the proposed
XACML policy profile to allow dynamic policy
generation based on the templates that support Role-Based
Access Control (RBAC) model to manage authorization
services for complex hierarchical user groups and
infrastructures. The paper provides update on the current
implementation results based on the GAAA-TK toolkit
library [6]. The presented research is conducted as a part
of the two EU projects GEYSERS [7] and GEANT3 [8]
which provide a prototype implementation and testbed.

The structure of paper is organized as follows: section
II revisits a Cloud IaaS model which motivates the

2

development of the Dynamic Access Control
Infrastructure (DACI). Section III presents the policy
management in the DACI, including policy generation
model for RBAC and its approach applying for XACML
standard. After that, section IV discusses on trust
management and establishment for the infrastructure.
Section V describes on-going implementation details of
the DACI. Section VI provides an overview of some
related works motivating the presented research. Finally,
section VII contains the summary and suggestions for
further research directions.

II. ACCESS CONTROL FOR ON-DEMAND PROVISIONED

VIRTUALISED INFRASTRUCTURES SERVICES

A. Virtualised Infrastructure Services Provisioning

Model

On-demand Infrastructure Services Provisioning model
[9] is illustrated in Fig. 1. It defines the multilayer
infrastructure provisioning model that includes Physical
Infrastructure Providers (PI Provider), Virtual
Infrastructure Providers (VI Provider). Tenants, defined as
Virtual Infrastructure Operators (VIO), can subscribe IT-
resources (e.g.: storage, computing), network resources
(e.g.: network links) to form a completed Virtual
Infrastructure (VI) distributed crossing multiple physical
providers.

PIP4PIP3PIP2PIP1

VI Provider 2

VIO1

VI Provider 1

VRI1

VRI2

VRI3 VIR4

VIR5

VIR6

VR1 VR2 VR3 VR4 VR5 VR6

ND-PIP1 ND-PIP2 ND-PIP3 ND-PIP4

Network domain - VI Provider 1
Network domain - VI Provider

2

Network domain VIO-1

IT
 In

fr
as

tr
u

ct
u

re
 V

ir
tu

al
is

at
io

n

Network Infrastructure Virtualisation and Instantiation

VI Operators
Layer

VI Providers
Layer

PI Providers
Layer

Network
abstraction

Layer

Legend
 VI – Virtual infrastructure
 VIR – Deployed Virtual Resource
 VR – Virtual Resource

VIO – VI Operator
PIP – Physical Infrastructure Provider
ND – Network Domain

Figure 1. Virtualised Infrastructure Service Provisioning Model

VI Provider runs the Virtual Infrastructure
Composition and Management (VICM) layer that consists
of three layers components. It includes the Logical
Abstraction Layer and the VI/VR Adaptation Layer facing
correspondingly lower PI Providers and upper Application
layer of VI Operators [9]. The proposed architecture

motivates for the development of an access control
infrastructure to support multi-tenant, multi-provider,
dynamically configurable services that be provisioned and
operate across different security and network domains.
The Dynamic Access Control Infrastructure (DACI),
including core architecture and some scenarios, is
described in the following section.

B. Access Control Architecture

The involvement of multi-providers, multi-tenants
across multi-domains resources of the Virtualised
Infrastructure Service Provisioning model requires an
access control infrastructure that should handle the
dynamic relationships as well as security services with
configurable parameters during the infrastructure
provisioning lifecycle. The DACI is proposed to solve the
mentioned above issues and challenges of the access
control for Virtualised Infrastructure Services
Provisioning.

Basic DACI architecture (Fig. 2) is initially introduced
in [10] and has been improved based on current
implementation in the GEYSERS project [7]. It includes
three interfaces to integrate with the VICM layer of the VI
Provider. The internal Authentication and Authorization
Interface is used to control internal authentication and
authorization operations during virtual infrastructure
composition and management at the VI Provider. During
provisioning phases of a VI, VICM initiates the
instantiation process for the access control instance
(DACS) of this VI through the DACS Management
interface. The DACS plays as the access control as a
service for the VI, which its administrations on
authentication & authorization are delegated to the VIO,
owner of the VI. The APIs for policy management are
defined in section III.

The VI Authorization interface is the DACS public
interface to receive authorization requests from end-users
to access a deployed virtual resource (VIR) of the VI in
which they belong to. Based on the isolation mechanisms
using VI Global Reservation Identifier, final decisions are
evaluated and combined from the DACS Authorization
Service instance of VI and the internal AAI authorization
service of VICM.

AAI DACS Services

VI Composition &
Management for

VI Providers

Authentication
Service

Authorization
Service

AuthZ
TokenService

DACI Management

DACI Trust
Manager

DACS Authorization Layer
SecurityGateway

In
te

rn
al

 A
A

I f
o

r
V

I
P

ro
vi

d
er

D
A

C
S

m
an

ag
em

en
t

in
te

rf
ac

e

VI Authorization API

DACS
Manager

DACI for VI Provider

AAI Trust
Manager

Se
cu

ri
ty

G
at

ew
ay

Authentication
Services

Authorization
Services

AuthZ
TokenServices

Figure 2. DACI Architecture incorporated with the Virtual

Infrastructure Provider architecture

3

This interface also may issue an authorization ticket
that will include the request information and authorization
decisions as the security credential proof for end-users to
access virtual resources directly at PI Providers in
subsequent VI operational stage of a single virtual
infrastructure as in Fig. 3, or collaboration between

multiple virtual infrastructures as in Fig. 4. Here we
assume that the trust relationships between the VI Provider
and its PI Providers, as well peer-to-peer trust of VI
Providers are established based on the dynamic trust
model in [10].

DACI at
VI Provider

VIR at
PI Provider

Users/3rd
Cloud

services

1 VIR Authz re
quest

2 Iss
ued authzTicket

Access VIR

3

Response

4

Figure 3. Access virtual resources scenarios from Users/3rd Cloud

services.

Security domain-A.1 Security domain-B.1

DACI-A.1 at VI
Provider-A

DACI-B.1 at
VI Provider-B

Trust

VIR at
PI Provider-B.1

1

VI
R

A
ut

hz
 re

qu
es

t

2

Is
su

ed
 a

ut
hz

Ti
ck

et

3
VIR Authz request

4 Issued authzTicket

5 Access VIR

6 Response

Users/3rd
Cloud

services

Figure 4. Access virtual resources scenarios from Users/3rd Cloud

services in different virtual infrastructures

III. POLICY MANAGEMENT IN DACI

A. Policy generation model

The hierarchy model of RBAC [11] defines
{ } in which U is set of users, R is set of
roles, P is set of permissions, PA is the permission
assignment to role, UA is the role assignment to user and
RH is role hierarchy:

 is the permission to role
assignment. () if the
permission is assigned to role .

 is the user to role assignment.
 () if the role is assigned
to user .

 is a partial order on R called the
role hierarchy, also written as is that
the role inherits all permissions from the
role r.

We have set of resource identifiers, called set of
objects O. Equivalent to each object , there is a set of
actions . We define a permission as:

Based on the administrative permissions of RBAC

model, policy composition and management have
following operations:

 Create a permission p from object o and
action a, ():

 { } ()

 Assign a permission to a role,
 ():

 {()} ()

 Assign a user to a role,
 ():

 {()} ()

 Create a role that inherits from an existing
role ():

 { }

Equivalent to create or assign operations, there are also

remove or unassign operations:

 Remove a permission from permission set
 ()

 { }
 Unassign a permission from a role,

 ():
 {()} ()

 Unassign a user from a role,
 ():

 {()} ()
 Remove a role, ():

 { }
Each operation can be implemented by a generated

XACML policy following RBAC profile of XACML in
[12]. We will illustrate policy generation in the
implementation section with example.

B. XACML policy generation

The DACS uses XACML policy language [13] for
authorization request evaluation. To adapt typical
hierarchical organizations’ structures, we select the

4

XACML RBAC profile [12] as described in the
implementation section. With parameters for RBAC
configuration such as resource identifiers of VIRs in the
instantiated VI along with equivalent actions, permissions
assignment to roles and roles assignment to end-users, we
use XACML policy templates to generate XACML polices
for the DACS authorization service. In this manner, VIOs
are provided with tools to administer both identity
management and authorization policies composition.

IV. DACS TRUST MANAGEMENT

The trust-path from the end-users to the PI Providers is
built up based on X.509 certificates exchange between
entities in the path. Upon establishing trust links during
initial deployment stage, each entity has a trusted
certificates list of neighbour partners’ in the trust-path. As
described in Fig. 4, because of the VI Provider’s
certificates is stored in the PIP’s trust list, the PIP can
verify requests from users which contain the authorization
ticket issued and signed by this VIP. The verification is
based on SAML assertion as the subject confirmation
credential, along with the authorization ticket in previous
section.

The DACI relies on a number of key trust anchors
which can be secured further by anchoring them to a
trusted machine in a known state [10]. As the Direct
Anonymous Attestation (DAA) component of the TPM
specification is not currently well supported an alternative
is required. A machine with a Trusted Platform Module
(TPM) can boot into a known and trusted state. The TPM
can create a non-migratable key-pair that is sealed and
only accessible in this known state. If any part of the boot
process is changed or tampered with, it will not be possible
to access the private key. As the key is non-migratable, it
is not possible to backup or extract the private key from
the TPM. Only the specific machine in a specified and
trusted state will be able to decrypt or sign messages using
the key-pair.

A Vanguard application is a program sent to a remote
machine to verify whether it is in a trustworthy state [10].
For machines with an active TPM, Vanguard and any
subsequent files can be encrypted using the machine's non-
migratable key-pair. This ensures that only the destination
machine can decrypt the application. The payload contains
a shared secret that Vanguard can use to authenticate itself
to the machine that sent it. Vanguard can verify the status
of the TPM and can in addition verify the setup and
configuration details of the machine. It can then exchange
the initial infrastructure files needed to bootstrap the
infrastructure. Once the infrastructure has been transferred
and verified, Vanguard executes and begins the
bootstrapping process. At this stage the infrastructure
being deployed takes control of the process.

V. IMPLEMENTATION DETAIL

We implement DACI as Java OSGi bundles
corresponding to components shown in Fig. 2, based on

the GAAA-TK library using Sun’s XACML and
OpenSAML libraries [14], [15].

These bundles can be deployed in OSGi platforms such
as Apache Felix or ServiceMix [16]. To make
compatibility with other components in Geysers project
[7], we currently supports two packages types: OSGi
bundles in Apache ServiceMix and web services in
Apache Tomcat, in which OSGi bundles are wrapped by
SOAP web service layers.

A. SecurityGateway

The SecurityGateway provides the unified interface to
integrate authentication, authorization functionalities with
authorization token supports, along with attributes
collecting and validation prior authorization evaluation.

To unify authentication, authorization and attribute
validation, we define the SecurityContext container as the
placeholder for authentication credentials and
authorization requests’ attributes, along with related
security context data such as trusted entity identifiers.

SecurityContext = {AuthenticationData, AuthorizationData,

SessionData, SecurityData}

 Credential types are then forwarded to corresponding
authentication adapters during the validation process.
Current implementation supports basic username/password
credential with token-based validation using SAML
assertion. Other schemes such as LDAP, Kerberos, and
HTTP authentication will be supported in the future.

B. XACML policy composition

The Authorization service follows the XACML
standard recommendation for Policy Decision Point
implementation [13]. It implements the Role-Based
Access Control model (ANSI-RBAC [17]) using XACML
RBAC policy profile [12] running on SunXACML library
[14]. We define roles and permissions as loose coupling
XACML Policy and PolicySet entities so that it is easy to
add or remove permissions to multiple roles.

In the following examples, Fig. 5 defines a role policy
that matches if the subject in the authorization request has
the role attribute ‘VIO’. The PolicySetIdReference
indicates that PDP must look up a PolicySet with reference
‘PPS:VIO:role’ for the evaluation process. The Fig. 6
specifies which permissions are assigned to the role VIO
by PolicyIdReference values. The PDP then keep
referencing those policies and one of them is the policy in
Fig. 7, to allow the request for a new virtual infrastructure.
With this approach, it is easy to implement policy
management functions described in section III: to create
permission, we use the policy template in Fig. 7 with two
parameters that are action-id and resource-id; to assign a
permission to a role, we use the template in Fig. 6 by
inserting appropriate created permission policy identifier
in the PolicyIdReference element. We can create a role by
using policy template in Fig. 5 and can assign a user to a
role by updating user’s role attributes in the authentication
service.

5

Figure 5. XACML PolicySet template for role VIO

Figure 6. XACML PolicySet template for permissions of role VIO

Figure 7. XACML Policy template for a permission.

It should be noted that here XACML policies are
organised in hierarchical order, in which at the root level
there are roles assignment policies (Fig. 5), subsequently
permission role policies (Fig. 6) are placed at the lower
layer and finally the permission policies (Fig. 7). This
structure is also applied to and deployed in the
implementation using Sun’s XACML library [14].

C. Security context sharing and Authorization ticket

format

To support authorization session context sharing
among multiple providers and multiple domains as
illustrated in Fig. 3 and Fig. 4, we use authorization tickets
(AuthzTicket) to convey security context from the issuers
to verifiers as described in Fig. 8. It contains authorization
request contexts and authorization decisions from the VI
Providers as the DACI issuers with their digital signatures.
Upon receiving at PI Providers, based on trust credentials
established in the trust establishment process of the DACI
deployment phase [5], these tickets are verified and then
evaluated against authorization policies for VIR resources
managed at PI Providers. If all conditions are satisfied, PI
Providers allow users to access the deployed virtual
resources.

The authorization ticket schema in this paper is based
on the proposed AuthzTicket format for the GAAA-NRP
profile [18] that is extended for the specific needs of the
Virtualised Infrastructure Services Provisioning Model.

In authorization ticket schema, Subject, Resource and
Action elements are defined the same as equivalent
element definitions from the XACML context schema
[13]. It not only simplifies generation of both AuthzTicket
and XACML authorisation request but also ensures their
compatibility across the VI components and between
multiple providers. Decision element contains VI
Providers’ authorization results along with the target VIR
resource identifier at PI Providers. The validity time of the
authorization ticket is specified in the Condition element,
including NotBefore and NotOnOrAfter attributes. The
proposed schema also supports delegation with Delegation
element, to describe whether defined capabilities in
AuthzTicket is delegated and restricted for delegation.

Figure 8. Authorization Ticket format

VI. RELATED WORK

Sandhu et al. [11] and Ferraiolo et al. [19] proposed
Role-Based Access Control (RBAC) models, from the
basic RBAC to hierarchical RBAC. NIST then
standardized it as the ANSI-RBAC model [17] in 2004.
After that, Kuhn et al. [20] analysed RBAC combining

6

with attributed-based access control approaches to take
advantage of both their strengths, by defined set of RBAC-
A approaches, including Dynamic roles, Attribute-centric
and Role-centric.

OASIS eXtensible Access Control Markup Language
(XACML) [13] was defined as the standard for
authorization policies composition and management. It
operates based on attribute-based access control model
(ABAC) by using set of attributes of Subject, Resource,
Action and Obligation elements to evaluate decisions
against authorization policies. To incorporate with RBAC
model, OASIS defined RBAC profile for XACML in [12].
Current XACML 3.0 focuses on administration and
delegation [21] features. Because XACML standard only
defines authorization context and policies schemes without
specific protocol, Security Assertion Markup Language
(SAML) standard is often used as the transportation for
XACML requests and responses between Policy
Enforcement Point (PEP) and Policy Decision Point (PDP)
in the authorization model [22].

The problem of trust management in distributed,
decentralized environment was initially investigated by
Blaze et al. [23]. Subsequent work represented Datalog
trust policy languages by Li and Michell [24] and then
Role-based trust management language [25], in which trust
policies map subjects to roles based on attributes in their
credentials, then decisions were given from roles. Because
of distributed properties of attributes in decentralized
environment, they developed a credential chain discovery
algorithm to retrieve and collect credentials. Such these
algorithms belonged to trust negotiation process aware of
privacy of sensitive attribute information such as
automated trust negotiation of Li et al. [26] or the Privacy-
aware role-based access control framework by Ni et al.
[27].

Several previous works have proposed authorization
models and implemented distributed authentication and
authorization systems relating to cloud computing.
Shibboleth [14] is a federated identity-based authentication
system based on SAML. However it requires manual trust
establishment between security domains through
agreements and does not include authorization
management supporting RBAC models.

Calero et al. [28] described an authorization model
supporting hierarchical role-based access control, path-
based object hierarchies and federation for multi-tenancy
Cloud environment. Their work did not mention on multi-
provider property and security context sharing crossing
security domains among hierarchy providers in the Cloud
IaaS model as well as provisioning configurable services.

VII. CONCLUSION

We have proposed an approach and solutions to build
access control infrastructure that can be provisioned as a
part of the multi-tenant, multi-provider and multi-domain
Cloud IaaS infrastructure that complies with the general
service lifecycle management model. It supports dynamic
trust establishment with configurable security services.
Furthermore, the paper presents the RBAC-based policy

management approach which is practical for
implementation using XACML policy generation based on
the pre-defined templates. It solves the security context
sharing problem between distributed entities in the Cloud
IaaS architecture model by using authorization tickets.

The proposed DACI is currently being implemented in
the framework of the GEYSERS project [6] on dynamic
infrastructure service provisioning.

We are currently working with trust management
model using policy language to support dynamic trust
establishment and interconnect trust policies with
authorization policies in the dynamically
provisioned/configured access control services. We also
extend the policy generation and management to support
flexible RBAC properties assignment/configuration such
as separation of duties (SoD) and delegations. We also
plan to extend DACS to be able to interoperate and
integrate with existing identity and management systems.

REFERENCES

[1] NIST SP 800-145, “A NIST definition of Cloud

computing,” Sep. 2011.

[2] NIST SP 500-291, “NIST Cloud Computing Standards

Roadmap,” NIST, NIST SP 500-291, Jul. 2011.

[3] “OGF ISOD-RG,” Infrastructure Services On-Demand

Provisioning Research Group. [Online]. Available:

http://www.ogf.org/gf/group_info/view.php?group=ISOD-

RG.

[4] OASIS IDCloud TC, “OASIS Identity in the Cloud TC.”

[Online]. Available: http://wiki.oasis-open.org/id-cloud/.

[5] Y. Demchenko, C. de Laat, D. R. Lopez, and J. A. Garcia-

Espin, “Security Services Lifecycle Management in On-

Demand Infrastructure Services Provisioning,” in 2010

IEEE Second International Conference on Cloud

Computing Technology and Science, Indianapolis, IN,

USA, 2010, pp. 644–650.

[6] Phosphorus Project, Deliverable D4.3.1, “GAAA Toolkit

pluggable components and XACML policy profile for

ONRP,” Deliverable D4.3.1, Sep. 2008.

[7] GEYSERS Project, “GEYSERS - Generalised

Architecture for Dynamic Infrastructure Services,” 2010.

[Online]. Available: http://www.geysers.eu/.

[8] GEANT Project, “GEANT3 - JRA3 Composable

Services.” [Online]. Available:

http://www.geant.net/pages/home.aspx.

[9] Y. Demchenko, C. Ngo, and C. de Laat, “Access control

infrastructure for on-demand provisioned virtualised

infrastructure services,” in 2011 International Conference

on Collaboration Technologies and Systems (CTS),

Philadelphia, PA, USA, 2011, pp. 466–475.

[10] C. Ngo, P. Membrey, Y. Demchenko, and C. de Laat,

“Security Framework for Virtualised Infrastructure

Services Provisioned On-demand,” 2011, pp. 698–704.

[11] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.

Youman, “Role-based access control models,” Computer,

vol. 29, no. 2, pp. 38–47, Feb. 1996.

[12] OASIS, “Core and hierarchical role based access control

(RBAC) profile of XACML v2.0.” 01-Feb-2005.

[13] OASIS, “XACML 2.0 Core: eXtensible Access Control

Markup Language (XACML) Version 2.0.” 01-Feb-2005.

7

[14] Internet2 Middleware Initiative, “Shibboleth v2.0,”

Shibboleth. [Online]. Available:

http://shibboleth.internet2.edu/.

[15] “OpenSAML library 2.x.” [Online]. Available:

http://www.opensaml.org/.

[16] The Apache Software Foundation, “Apache ServiceMix,”

FUSESource SOA, 2012. [Online]. Available:

http://servicemix.apache.org/.

[17] NIST, “Role Based Access Control,” 2004. [Online].

Available: http://csrc.nist.gov/rbac/.

[18] Y. Demchenko, O. Mulmo, L. Gommans, C. de Laat, and

A. Wan, “Dynamic security context management in Grid-

based applications,” Future Generation Computer Systems,

vol. 24, no. 5, pp. 434–441, May 2008.

[19] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R.

Chandramouli, “Proposed NIST standard for role-based

access control,” ACM Trans. Inf. Syst. Secur., vol. 4, no. 3,

pp. 224–274, Aug. 2001.

[20] D. R. Kuhn, E. J. Coyne, and T. R. Weil, “Adding

Attributes to Role-Based Access Control,” Computer, vol.

43, no. 6, pp. 79–81, Jun. 2010.

[21] OASIS, “XACML v3.0 Administration and Delegation

Profile,” OASIS, Aug. 2010.

[22] “SAML 2.0 Profile of XACML, Version 2,” OASIS, v2.0,

Aug. 2010.

[23] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust

management,” pp. 164–173.

[24] N. Li and J. C. Mitchell, “Datalog with constraints: a

foundation for trust management languages,” in

Proceedings of the fifth international symposium on

practical aspects of declarative languages, New Orleans,

2003.

[25] Ninghui Li, J. C. Mitchell, and W. H. Winsborough,

“Design of a role-based trust-management framework,” pp.

114–130.

[26] J. Li, N. Li, and W. H. Winsborough, “Automated trust

negotiation using cryptographic credentials,” ACM

Transactions on Information and System Security, vol. 13,

no. 1, pp. 1–35, Oct. 2009.

[27] Q. Ni, E. Bertino, J. Lobo, C. Brodie, C.-M. Karat, J.

Karat, and A. Trombeta, “Privacy-aware role-based access

control,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 3, pp.

1–31, Jul. 2010.

[28] J. M. A. Calero, N. Edwards, J. Kirschnick, L. Wilcock,

and M. Wray, “Toward a Multi-Tenancy Authorization

System for Cloud Services,” IEEE Secur. Privacy Mag.,

vol. 8, no. 6, pp. 48–55, Nov. 2010.

