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ABSTRACT 

 

This chapter discusses the challenges that are imposed by Big Data on the modern and future 

e-Scientific Data Infrastructure. The chapter discusses a nature and definition of Big Data that 

include such characteristics as Volume, Velocity, Variety, Value and Veracity. The chapter 

refers to different scientific communities to define requirements on data management, access 

control and security. The chapter introduces the Scientific Data Lifecycle Management 

(SDLM) model that includes all the major stages and reflects specifics in data management in 

modern e-Science. The chapter proposes the generic SDI architecture model that provides a 

basis for building interoperable data or project centric SDI using modern technologies and 

best practices.  

 

The chapter discusses how the proposed models SDLM and SDI can be naturally 

implemented using modern cloud based infrastructure services, analyses security and trust 

issues in cloud based infrastructure and summaries requirements to access control and access 

control infrastructure that should allow secure and trusted operation and use of SDI. 
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1. Introduction 

The emergence of Data Intensive Science is a result of modern science computerization and 

increasing range of observations, experimental data collected from specialist scientific 

instruments, sensors, simulation in every field of science. Modern science requires wide and 

cross-border researchers collaboration. e-Science Data Infrastructure (SDI) need to provide 

an environment capable both to deal with the ever increasing heterogeneous data production 

and to provide trusted collaborative environment for distributed groups of researcher and 

scientists. Additionally SDI needs to provide access to existing scientific information 

including libraries, journals, datasets and specialist scientific databases, on one hand, and 

provide linking between experimental data and publications, on the other hand.  

Industry is also experiencing wide and deep technologies re-factoring to become data 

intensive and data powered. Cross-fertilisation between emerging data intensive/driven e-

Science and industry will bring new data intensive technologies that will drive new data 

intensive/powered applications.  

Further successful technology development will require the definition of the Scientific Data 

Infrastructure (SDI) and overall architecture framework of the Data Intensive Science. This 

will provide a common vocabulary and allow concise technology evaluation and planning for 

specific application and collaborative projects or groups. 

Big Data technologies are becoming a current focus and a new “buzz-word” both in science 

and in industry. Emergence of Big Data or data centric technologies indicates the beginning 

of a new form of the continuous technology advancement that is characterized by overlapping 

technology waves related to different aspects of the human activity from production and 

consumption to collaboration and general social activity. In this context data intensive 

science plays key role. 

Big Data are becoming related to almost all aspects of human activity from just recording 

events to research, design, production and digital services or products delivery, to the final 

consumer. Current technologies such as Cloud Computing and ubiquitous network 

connectivity provide a platform for automation of all processes in data collection, storing, 

processing and visualization.  

Modern e-Science infrastructures allow targeting new large-scale problems whose solution 

was not possible before, e.g. genome, climate, global warming. e-Science typically produces 

a huge amount of data that need to be supported by a new type of e-Infrastructure capable to 

store, distribute, process, preserve, and curate these data [1, 2]: we refer to this new 

infrastructures as  Scientific Data e-Infrastructure (SDI). 

In e-Science, the scientific data are complex multifaceted objects with the complex internal 

relations, they are becoming an infrastructure of their own and need to be supported by 

corresponding physical or logical infrastructures to store, access, process, visualise and 

manage these data. 

The emerging SDI should allow different groups of researchers to work on the same data sets, 

build their own (virtual) research and collaborative environments, safely store intermediate 

results, and later share the discovered results. New data provenance, security and access 

control mechanisms and tools should allow researchers to link their scientific results with the 

initial data (sets) and intermediate data to allow future re-use/re-purpose of data, e.g. with the 

improved research technique and tools.  

This chapter analyses new challenges imposed to modern e-Science infrastructures by the 

emerging Big Data technologies; it proposes a general approach and architecture solutions 

that constitute a new Scientific Data Lifecycle Management (SDLM) model and the generic 
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SDI architecture model that provides a basis for heterogeneous SDI components 

interoperability and integration, in particular based on cloud infrastructure technologies. 

The chapter is primarily focused on SDI, however provides analysis of the Big Data nature in 

both e-Science, industry and other domains,  analyses their commonalities and difference, 

discussing also possible cross-fertilisation between two domains.  

The chapter refers to the ongoing research on defining the Big Data infrastructure for e-

Science initially presented in the papers [3, 4] and significantly extends it with new results 

and wider scope to investigate relations between Big Data technologies in e-Science and 

industry. With long tradition of working with constantly increasing volume of data, modern 

science can offer industry the scientific analysis methods, while industry can bring Big Data 

technologies and tools to wider public. 

The chapter is organised as follows. Section 2 looks into Big Data definition and Big Data 

nature in science, industry, business, and social networks analysing also the main drivers for 

the Big Data technology development. Section 3 gives an overview of the main research 

communities and summarizes requirement to future SDI. Section 4 discusses challenges to 

data management in Big Data Science, including SDLM discussion. Section 5 introduces the 

proposed e-SDI architecture model that is intended to answer the future big data challenges 

and requirements. Section 6 discusses SDI implementation using cloud technologies. Section 

6 discusses security and trust related issues in handling data and summarises specific 

requirements  to access control infrastructure for modern and future SDI. 
 

2. Big Data Definition 

2.1. Big Data in e-Science, Industry and other domains 

Science has been traditionally dealing with challenges to handle large volume of data in 

complex scientific research experiments. Scientific research typically includes collection of 

data in passive observation or active experiments which aim to verify one or another 

scientific hypothesis. Scientific research and discovery methods typically are based on the 

initial hypothesis and a model which can be refined based on the collected data. The refined 

model may lead to a new more advanced and precise experiment and/or the previous data re-

evaluation. Another distinctive feature of the modern scientific research is that it suggests 

wide cooperation between researchers to challenge complex problems and run complex 

scientific instruments.  

In industry, private companies will not share data or expertise. When dealing with data, 

companies will intend always keep control over their information assets. They may use 

shared third party facilities, like clouds, but special measures need to be taken to ensure data 

protection, including data sanitization. It might be also a case that companies can use shared 

facilities only for proof of concept and do production data processing at private facilities. In 

this respect, we need to accept that science and industry can't be done in the same way, and 

consequently this will be reflected in a way how they can interact and how the Big Data 

infrastructure and tools can be built. 

With the digital technologies proliferation into all aspects of business activities and emerging 

Big Data technologies, the industry is entering a new playground when it needs to use 

scientific methods to benefit from the possibility to collect and mine data for desirable 

information, such as market prediction, customer behavior predictions, social groups activity 

predictions, etc.  

A number of discussions and blog articles [5, 6, 7] suggest that the Big Data technologies 

need to adopt scientific discovery methods that include iterative model improvement and 
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collection of improved data, re-use of collected data with improved model.  

We can quote here a blog article by Mike Gualtieri from Forrester [8]:“Firms increasingly 

realize that [big data] must use predictive and descriptive analytics to find nonobvious 

information to discover value in the data. Advanced analytics uses advanced statistical, data 

mining and machine learning algorithms to dig deeper to find patterns that you can’t see 

using traditional BI (Business Intelligence) tools, simple queries, or rules.” 

2.2. The Big Data Definition 

Despite the “Big Data” has become a new buzz-word, there is no consistent definition for Big 

Data, nor detailed analysis of this new emerging technology. Most discussions until now have 

been going in blogosphere, where however the most significant Big Data characteristics have 

been  identified and became commonly accepted [8, 9.10]. In this section we will attempt to 

summarise available definitions and propose a consolidated view on the generic Big Data 

features that would help us to define requirements to supporting Big Data infrastructure and 

in particular Scientific Data Infrastructure. 

As a starting point, we can refer to the simple definition given in [9]: “Big Data: a massive 

volume of both structured and unstructured data that is so large that it's difficult to process 

using traditional database and software techniques.”  

Related definition of the data-intensive science is given in the book “The Fourth Paradigm: 

Data-Intensive Scientific Discovery” by the computer scientist Jim Gray [10]: “The 

techniques and technologies for such data-intensive science are so different that it is worth 

distinguishing data-intensive science from computational science as a new, fourth paradigm 

for scientific exploration.”  

2.3. 5 Vs of Big Data 

In a number of discussions and articles Big Data are attributed to have such native generic 

characteristics as Volume, Velocity, and Variety, also referred  to as  “3 Vs of Big Data”. 

After being stored and entered into the processing stages or workflow,  Big Data acquire new 

properties such as Value and Veracity which together constitute   the Big Data as 5 Vs: 

Volume, Velocity, Variety, Value, and Veracity [4].  

Figure 1 below illustrates the features related to 5 Vs which we analyse below. 

 

 
Figure 1. 5 Vs of Big Data 

 

Volume 

Volume is the most important and distinctive feature of Big Data which impose additional 
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and specific requirements to all traditional technologies and tools currently used.   

In e-Science, growth of data amount is caused by advancements in both scientific instruments 

and SDI. In many areas the trend is actually to include data collections from all observed 

events, activities and sensors what became possible and is important for social activities and 

social sciences. 

Big Data volume includes such features as size, scale, amount, dimension for tera- and 

exascale data recording either data rich processes, or collected from many transactions and 

stored in individual files or databases – all needs to be accessible, searchable, processed and 

manageable. 

Two examples from e-Science give also different characters of data and also different 

processing requirements, such as: 

 Large Hadron Collider (LHC) [11, 12] produces in average 5 PB data a month  that are 

generated in a number of short collisions that make them unique events, The collected data 

are filtered, stored and extensively searched for single events that may confirm a scientific 

hypothesis. 

 LOFAR (Low Frequency Array) [13] is a radio telescope that collects about 5 PB every 

hour, however the data are processed by correlator and only correlated data are stored. 

In industry, global services providers such as Google [14], Facebook [15], Twitter [16] are 

producing, analyzing and storing data in huge amount as their regular activity/production 

services. Although some of their tools and processes are proprietary, they actually prove the 

feasibility of solving Big Data problems at the global scale and significantly push the 

development of the Open Source Big Data tools. 

Velocity 

Big Data are often generated at high speed, including also data generated by arrays of sensors 

or multiple events, and need to be processed in real-time, near real-time or in batch, or as 

streams (like in case of visualisation).  

As an example, LHC ATLAS detector [12] uses about 80 readout channels and collects up to 

1PB of unfiltered data in second which are reduced to approx. 100MB per second. This 

should record up to 40 million collision events per second.  

Industry can also provide numerous examples when data registration, processing or 

visualization impose similar challenges. 

Variety 

Variety deals with the complexity of big data and information and semantic models behind 

these data. This is resulted in data collected as structured, unstructured, semi-structured, and a 

mixed data. Data variety imposes new requirements to data storage and database design 

which should dynamic adaptation to the data format, in particular scaling up and down. 

Biodiversity research [17] provides a good example of the data variety due to the fact that 

biodiversity involves collecting and processing information from wide range of sources and 

collected information related to species population, genomic data, climate, satellite 

information, etc. Another example can be urban environment monitoring (also called “smart 

cities” [18]) that requires operating, monitoring and evolving of numerous processes, 

individuals and associations. 

Adopting data technologies in traditionally non-computer oriented areas such as psychology 

and behavior research, history, archeology will generate especially rich data sets. 

Value  

Value is an important feature of the data which is defined by the added-value that the 

collected data can bring to the intended process, activity or predictive analysis/hypothesis. 

Data value will depend on the events or processes they represent such as stochastic, 

probabilistic, regular or random. Depending on this the requirements may be imposed to 
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collect all data, store for longer period (for some possible event of interest), etc. In this 

respect data value is closely related to the data volume and variety. The stock exchange 

financial data provides a good example of high volume data which have high value for real 

time market trends monitoring, however decreasing value with time and depending on the 

market volatility [19]. 

Veracity 

Veracity dimension of Big Data includes two aspects: data consistency (or certainty) what 

can be defined by their statistical reliability; and data trustworthiness that is defined by a 

number of factors including data origin, collection and processing methods, including trusted 

infrastructure and facility. 

Big Data veracity ensures that the data used are trusted, authentic and protected from 

unauthorised access and modification. The data must be secured during the whole their 

lifecycle from collection from trusted sources to processing on trusted compute facilities and 

storage on protected and trusted storage facilities.  

The following aspects define and need to be addressed to ensure data veracity: 

 Integrity of data and linked data (e.g., for complex hierarchical data, distributed data) 

 Data authenticity and (trusted) origin  

 Identification of both data and source 

 Computer and storage platform trustworthiness 

 Availability and timeliness 

 Accountability and Reputation 

Data veracity relies entirely on the security infrastructure deployed and available from the 

Big Data infrastructure [20]. 

3. Research Infrastructures and Infrastructure requirements 

This section will refer and provide short overview of different scientific communities, in 

particular as defined by the European Research Area (ERA) [21], to define requirements on 

infrastructure facility, data processing and management functionalities, user management, 

access control and security.  

 

3.1. Paradigm change in modern e-Science  

Modern e-Science is moving to the Data Intensive technologies that are becoming a new 

technology driver and require re-thinking a number of infrastructure architecture and 

operational models, components, solutions and processes to address the following general 

challenges [2, 4]: 

 Exponential growth of data volume produced by different research instruments and/or 

collected from sensors  

 Need to consolidate e-Infrastructures as persistent research platforms to ensure research 

continuity and cross-disciplinary collaboration, deliver/offer persistent services, with 

adequate governance model.  

The recent advancements in the general computer and big data technologies facilitate the 

paradigm change in modern e-Science that is characterized by the following features: 

 Automation of all e-Science processes including data collection, storing, classification, 

indexing and other components of the general data curation and provenance. 

 Transformation of all processes, events and products into digital form by means of multi-
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dimensional multi-faceted measurements, monitoring and control; digitising existing 

artifacts and other content. 

 Possibility to re-use the initial and published research data with possible data re-purposing 

for secondary research 

 Global data availability and access over the network for cooperative group of researchers, 

including wide public access to scientific data. 

 Existence of necessary infrastructure components and management tools that allow fast 

infrastructures and services composition, adaptation and provisioning on demand for 

specific research projects and tasks. 

 Advanced security and access control technologies that ensure secure operation of the 

complex research infrastructures and scientific instruments and allow creating trusted 

secure environment for cooperating groups and individual researchers  

The future SDI should support the whole data lifecycle and explore the benefit of the data 

storage/preservation, aggregation and provenance in a large scale and during long/unlimited 

period of time. Important is that this infrastructure must ensure data security (integrity, 

confidentiality, availability, and accountability), and data ownership protection. With current 

needs to process big data that require powerful computation, there should be a possibility to 

enforce data/dataset policy that they can be processed on trusted systems and/or complying 

other requirements. Researchers must trust the SDI to process their data on SDI facilities and 

be ensured that their stored research data are protected from non-authorised access. Privacy 

issues are also arising from distributed remote character of SDI that can span multiple 

countries with different local policies. This should be provided by the corresponding Access 

Control and Accounting Infrastructure (ACAI) which is an important component of SDI [20, 

22]. 

3.2. Research communities and specific SDI requirements 

A short overview of some research infrastructures and communities, in particular the ones 

defined for the Europe Research Area (ERA) [21] allows us to better understand specific 

requirements for the future SDIs that is capable to address Big Data challenges.  

Existing studies of European e-Infrastructures analyze the scientific communities practices 

and requirements; examples are those undertaken by the SIENA Project [23], EIROforum 

Federated Identity Management Workshop [24], European Grid Infrastructure (EGI) Strategy 

Report [25], UK Future Internet Strategy Group Report [26].  

The High Energy Physics community represents a large number or researchers, unique 

expensive instruments, huge amount of data that are generated and need to be processed 

continuously. This community has already the operational Worldwide Large Hadron Collider 

Grid (WLCG) [11] infrastructure to manage and access data, protect their integrity and 

support the whole scientific data lifecycle. WLCG development was an important step in the 

evolution of European e-Infrastructures that currently serves multiple scientific communities 

in Europe and internationally. The EGI cooperation [27] manages European and worldwide 

infrastructure for HEP and other communities. 

Material science, analytical and low energy physics (proton, neutron, laser facilities) is 

characterized by short projects, experiments and consequently highly dynamic user 

community. It requires highly dynamic supporting infrastructure and advanced data 

management infrastructure to allow wide data access and distributed processing. 

Environmental and Earth science community and projects target regional/national and 
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global problems. They collect huge amount of data from land, sea, air and space and require 

ever increasing amount of storage and computing power. This SDI requires reliable fine-

grained access control to huge data sets, enforcement of regional issues, policy based data 

filtering (data may contain national security related information), while tracking data use and 

keeping data integrity.  

Biological and Medical Sciences (also defined as Life sciences) have a general focus on 

health, drug development, new species identification, new instruments development. They 

generates massive amount of data and new demand for computing power, storage capacity, 

and network performance for distributed processes, data sharing and collaboration. 

Biomedical data (healthcare, clinical case data) are privacy sensitive data and must be 

handled according to the European policy on Personal Data processing [27].  

Biodiversity research [17] involves research data and research specialists at least from 

biology, environmental research and may include data about climate, weather and satellite 

observation. This primarily present challenges for integrating different sources of information 

with different data models and processing huge amount of collected information but may also 

require fast data processing in case of natural disasters. The projects LifeWatch [28] and 

ENVRI [29] present good example of what research approaches and what kind of data are 

used here. 

Social Science and Humanities communities and projects are characterized by multi-lateral 

and often global collaborations between researchers from all over the world that need to be 

engaged into collaborative groups/communities and supported by collaborative infrastructure 

to share data, discovery/research results and cooperatively evaluate results. The current trend 

to digitize all currently collected physical artifacts will create in the near future a huge 

amount of data that must be widely and openly accessible. 

3.3. General SDI Requirements 

From the overview we just gave we can extract the following general infrastructure 

requirements to SDI for emerging Big Data Science: 

 Support for long running experiments and large volume of heterogeneous data generated 

at high speed 

 On-demand infrastructure provisioning to support data sets and scientific workflows, 

mobility of data-centric scientific applications 

 Provide High Performance Computing facilities to allow complex data analytics with 

evolving research models 

 Support distributed and mobile sensor networks for observation data collection and 

advance information visualisation  

 Support of virtual scientists communities, addressing dynamic user groups creation and 

management, federated identity management 

 Support the whole data lifecycle management, in particular, advanced data provenance, 

data archiving and consistent data identification  

 Multi-tier inter-linked data distribution and replication 

 Trusted environment for data storage and processing 

 Support for data integrity, confidentiality, accountability 

 Policy binding to data to protect privacy, confidentiality and IPR 
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4. Scientific Data Management 

4.1. Scientific Information and Data in modern e-Science 

Emergence of computer aided research methods is transforming the way research is done and 

scientific data are used. The following types of scientific data are defined as illustrates in a 

form of Scientific Data pyramid (see Figure 2) [22]: 

 Raw data collected from observations and from experiments (what actually is done 

according to an initial research model or hypothesis)  

 Structured data and datasets that went through data filtering and processing (supporting 

some particular formal model which is typically refined from the initial model). These 

data are already stored in repositories and may be shared to collaborative groups of 

researchers. 

 Published data that supports one or another scientific hypothesis, research result or 

statement. These data are typically linked to scientific publications as supplemental 

materials, they may be located on the publisher’s platform or authors’ institution platform 

and have open or licensed access. 

 Data linked and embedded into publications to support the wide research consolidation, 

integration, and openness. 

Once the data are published, it is essential to allow other scientists to be able to validate and 

reproduce the data that they are interested in, and possibly contribute with new results. 

Capturing information about the processes involved in transformation from raw data up until 

the generation of published data becomes an important aspect of scientific data management. 

Scientific data provenance becomes an issue that also needs to be taken into consideration by 

SDI providers [30].   

Another aspect to take into consideration is to guarantee reusability of published data within 

the scientific community. Understanding semantic of the published data becomes an 

important issue to allow for reusability, and this had been traditionally been done manually. 

However, as we anticipate unprecedented scale of published data that will be generated in 

Big Data Science, attaching clear data semantic becomes a necessary condition for efficient 

reuse of published data. Learning from best practices in semantic web community on how to 

provide a reusable published data, will be one of consideration that will be addressed by SDI. 

Big data are typically distributed both on the collection side and on the processing/access 

side: data need to be collected (sometimes in a time sensitive way or with other 

environmental attributes), distributed and/or replicated. Linking distributed data is one of the 

problems to be addressed by SDI. 

The European Commission’s initiative to support Open Access  to scientific data from 

publicly funded projects suggests introduction of the following mechanisms to allow linking 

publications and data [31]:  

 PID - persistent data ID [32] 

 ORCID – Open Researcher and Contributor Identifier [23]. 
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Figure 2: Scientific Data Pyramid  
 

4.2. Data Lifecycle Management in Scientific Research 

Computer and IT enabled e-Science allows multipurpose data collection and use and 

advanced data processing. A possibility to store the initial data sets and all intermediate 

results will allow for future data use, in particular data re-purposing and secondary research 

as the technology and scientific methods develops.  

Emergence of computer aided research methods is transforming the way how research are 

done and scientific data are processed/used. This is also reflected in the changed Scientific 

Data Lifecycle Management  model as shown in Figure 3 and discussed below.  

We refer to the extensive study on the SDLM models in [34]. The traditional scientific data 

lifecycle includes a number of consequent stages (see Fig. 3,a):  

 Research project or experiment planning  

 Data collection 

 Data integration and processing 

 Publishing research results 

 Discussion, feedback 

 Archiving (or discarding) 

 

 
(a) 



11 

 

 

 
(b) 

Figure 3. Scientific Data Lifecycle Management in e-Science 

 

The new SDLM model requires data storage and preservation at all stages what should allow 

data re-use/re-purposing and secondary research on the processed data and published results. 

However, this is possible only if the full data identification, cross-reference and linkage are 

implemented in SDI. Data integrity, access control and accountability must be supported 

during the whole data during lifecycle. Data curation is an important component of the 

discussed SDLM and must also be done in a secure and trustworthy way. 

Support data security and access control to scientific data during their lifecycle: data 

acquisition (experimental data), initial data filtering, specialist processing; research data 

storage and secondary data mining, data and research information archiving. 

5. Scientific Data Infrastructure Architecture Model 

The proposed generic SDI architecture model provides a basis for building interoperable data 

or project centric SDI using modern technologies and best practices. Figure 4 shows the 

multilayer SDI architecture for e-Science (e-SDI) that contains the following layers: 

Layer D1: Network infrastructure layer represented by either the general purpose Internet 

infrastructure or dedicated network infrastructure. 

Layer D2: Datacenters and computing resources/facilities. 

Layer D3: Infrastructure virtualisation layer that is represented by the Cloud/Grid 

infrastructure services and middleware supporting specialised scientific platforms 

deployment and operation. 

Layer D4: (Shared) Scientific platforms and instruments specific for different research areas. 

Layer D5: Access and Delivery Layer that represent the general Federated Access and 

Delivery (FADI) that includes infrastructure components for interconnecting, integrating and 

operating complex scientific infrastructure to support project oriented collaborative groups of 

researchers.  

Layer D6: Scientific applications, subject specific databases and user portals/clients. 

Note: “D” prefix denotes relation to data infrastructure. 
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Figure 4. The proposed SDI architecture model 

 

We define also the three cross-layer planes: Operational Support and Management System, 

Security plane, and Metadata and Lifecycle Management. • 

The dynamic character of SDI and its support of distributed multi-faceted communities are 

guaranteed by the dedicated layers: D3 – Infrastructure Virtualisation layer that typically uses 

modern cloud technologies; and D5 – Federated Access and Delivery Infrastructure layer that 

incorporates related federated infrastructure management and access technologies [21, 35, 

36]. Introducing the FADI layer reflects current practices in building and managing complex 

SDIs (and also enterprise infrastructures) and allows independently managed infrastructures 

to share resources and support the inter-organisational cooperation. 

Network infrastructure is presented as a separate lower layer in e-SDI but dedicated network 

infrastructure provisioning is also relevant to the FADI layer. Network aspects in Big Data 

are becoming even more important than it was e.g. with Computer Grids and clouds. We can 

identify two main challenges that Big Data transport will impose on the underlying layer of 

the SDI: 

 Timely delivery, in order to bring all data where required with the smallest possible 

latency.  

 Cost reduction, in order to optimize the amount of network equipment required (either via 

purchasing it or on a pay-per-use) without  scarifying the Quality of Service (QoS).   

For many SDIs the basic best-effort Internet is the only available network transport 

architecture. In these cases, given the constraints imposed by this shared medium, it will be 

difficult to fully provide the low latency and guaranteed delivery required for Big Data 

processing. Performance  may be lower but it will be manageable. 

A smaller number of SDI will rely on circuit-based networks where the timely delivery of 
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data will be guaranteed but the costs for operating or using the network path will be 

significantly higher. 

We see a third possibility for dealing with Big Data at the lowest layer of the SDI. Emerging 

protocols for network programmability, we can think for example of OpenFlow and in 

general of Software Defined Networks, provide interesting solutions. By fully controlling the 

network equipment both time and costs can be optimized.   

Although the dilemma of moving data to computing facilities or vice versa moving 

computing to data location can be solved in some particular cases, processing highly 

distributed data on MPP (Massively Parallel Processing) infrastructures will require a special 

design of the internal MPP network infrastructure.  

 

6. Cloud Based Infrastructure Services for SDI 

Figure 5 illustrates the typical e-Science or enterprise collaborative infrastructure that is 

created on demand and includes enterprise proprietary and cloud based computing and 

storage resources, instruments, control and monitoring system, visualization system, and 

users represented by user clients and typically residing in real or virtual campuses.  

The main goal of the enterprise or scientific infrastructure is to support the enterprise or 

scientific workflow and operational procedures related to processes monitoring and data 

processing. Cloud technologies simplify the building of such infrastructure and provision it 

on-demand. Figure 3 illustrates how an example enterprise or scientific workflow can be 

mapped to cloud based services and later on deployed and operated as an instant inter-cloud 

infrastructure. It contains cloud infrastructure segments IaaS (VR3-VR5) and PaaS (VR6, 

VR7), separate virtualised resources or services (VR1, VR2), two interacting campuses A and 

B, and interconnecting them network infrastructure that in many cases may need to use 

dedicated network links for guaranteed performance. 
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Figure 4. From scientific workflow to cloud based infrastructure. 

Efficient operation of such infrastructure will require both overall infrastructure management 

and individual services and infrastructure segments to interact between themselves. This task 

is typically out of scope of the existing cloud service provider models but will be required to 

support perceived benefits of the future e-SDI. These topics are a subject of another research 

by the authors on the InterCloud Architecture Framework [37, 38, 39]. 

Besides the general cloud base infrastructure services (storage, compute, infrastructure/VM 

management) the following specific applications and services will be required to support Big 

Data and other data centric applications [40]: 

 Cluster services 

 Hadoop related services and tools 

 Specialist data analytics tools (logs, events, data mining, etc.) 

 Databases/Servers SQL, NoSQL 

 MPP (Massively Parallel Processing) databases 

 Big Data Management tools 

 Registries, indexing/search, semantics, namespaces 

 Security infrastructure (access control, policy enforcement, confidentiality, trust, 

availability, privacy) 

 Collaborative environment (groups management) 

Big Data analytics tools are currently offered by the major cloud services providers such as: 

Amazon Elastic MapReduce and Dynamo [41], Microsoft Azure HDInsight [42], IBM Big 

Data Analytics [43]. HPCC Systems by LexisNexis [44], Scalable Hadoop and data analytics 

tools services are offered by few companies that position themselves as Big Data companies 

such as Cloudera, [45] and few others [46]. 

7. Security Infrastructure for Big Data 

7.1 Security and Trust in Cloud based Infrastructure 

Ensuring data veracity in Big Data infrastructure and applications requires deeper analysis of 

all factors affecting data security and trustworthiness during their whole lifecycle. Figure 5 

illustrates the main actors and their relations when processing data on remote system. 

User/customer and service provider are the two actors concerned with their own data/content 

security and each other system/platform trustworthiness: user wants to be sure that their data 

are secure when processed or stored on the remote system.  
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Figure 5. Security and Trust in Data Services and Infrastructure. 

Figure 5 illustrates the complexity of trust and security relations even in a simple usecase of 

the direct user/provider interaction. In clouds data security and trust model needs to be 

extended to distributed, multi-domain and multi-provider environment.  

In the general case of multi-provider and multi-tenant e-Science cooperative environment, the 

e-SDI security infrastructure should support on-demand created and dynamically configured 

user groups and associations, potentially re-using existing experience in managing Virtual 

Organisations (VO) and VO-based access control in Computer Grids [47, 48].  

Data centric security models when used in generically distributed and also multi-provider e-

SDI environment will require policy binding to data and fine grained data access policy that 

should allow flexible policy definition based on the semantic data model. Based on the 

authors’ experience, the XACML (eXtensible Access Control Mark-up Language) policy 

language can provide a good basis for such functionality [49, 50]. However support of the 

data lifecycle and related provenance information will require additional research in policy 

definition and underlying trust management models. 

7.2. General Requirements to Access Control Infrastructure 

To support secure data processing, the future SDI should be supported by a corresponding 

Access Control and Accounting Infrastructure (ACAI) that would ensure normal 

infrastructure operation, assets and information protection, and allow user authentication and 

policy enforcement in the distributed multi-organisations environment.  

Moving to Open Access [31] may require partial change of business practices of currently 

existing scientific information repositories and libraries, and consequently the future ACAI 

should allow such transition and fine grained access control and flexible policy definition and 

control. 

Taking into account that future SDI should support the whole data lifecycle and explore the 

benefit of the data storage/preservation, aggregation and provenance in a large scale and 

during long/unlimited period of time, the future ACAI should also support all stages of the 

data lifecycle, including policy attachment to data to ensure persistency of the data policy 

enforcement during continuous online and offline processes. 

The required ACAI should support the following features of the future SDI: 

 Empower researchers (and make them trust) to do their data processing on shared facilities 

of large datacentres with guaranteed data and information security  

 Motivate/ensure researchers to share/open their research environment to other researchers 

by providing tools for instantiation of customised pre-configured infrastructures to allow 

other researchers to work with existing or own data sets. 



16 

 

 

 Protect data policy, ownership, linkage (with other data sets and newly produced 

scientific/research data), when providing (long term) data archiving. (Data preservation 

technologies should themselves ensure data readability and accessibility with the 

changing technologies). 

8. Summary and Future Development 

The presented in this chapter research provides a snapshot of the fast developing Big Data 

and Data Analytics technologies that merge modern e-Science research methods and 

experience of dealing with the large scale problems, on one hand, and modern industry speed 

of the technology development and global scale of implementation and services availability. 

At this stage we tried to summarise and re-think some widely used definitions related to Big 

Data, further research will require more formal approach and taxonomy of the general Big 

Data use cases both in science and industry. 

As a part of the general infrastructure research we will continue research on the infrastructure 

issues in Big Data targeting more detailed and technology oriented definition of SDI and 

related security infrastructure definition. Special attention will be given to defining the whole 

cycle of the provisioning SDI services on-demand, specifically tailored to support instant 

scientific workflows using cloud IaaS and PaaS platforms. This research will be also 

supported by development of the corresponding Cloud and InterCloud architecture 

framework to support the Big Data e-Science processes and infrastructure operation. 

Although currently proposed SDLM definition have been accepted as the European 

Commission Study recommendation [21], the further definition of the related metadata, 

procedures and protocols as well as SDLM extension to the general Big Data lifecycle is 

required.  

The presented research is planned to be contributed to the two standardisation bodies related 

to the emerging Big Data technology where authors are actively involved: the Research Data 

Alliance (RDA) [51] and recently established the NIST Big Data WG (NBD-WG) [52].  
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